Extrasolar planet - Cont'dSolar system formation processesOne question raised by the detection of extrasolar planets is why so many of the detected planets are gas giants which, in comparison to Earth's solar system, are unexpectedly close to the orbited star. For example, Tau Boötis has a planet 4.1 times Jupiter's mass, which is less than a quarter of an astronomical unit (AU) from the orbited star, that is closer to the star than Mercury orbits the sun. HD 114762 has a planet 11 times Jupiter's mass, which is less than half an AU from the orbited star. One possible answer to these unexpected planetary orbits is that since astrometrics detects the extrasolar planets due to their gravitational influences and partially-ecliptic interference, perhaps current technology only permits the detection of systems where a large planet is close to the orbited star, rather than such systems being the norm.
The frequency of extrasolar planets is one of the parameters in the Drake equation, which attempts to estimate the probability of communications with extraterrestrial intelligence.
Notable extrasolar planets- In 1992, Wolszczan and Frail published results indicating that pulsar planets existed around PSR B1257+12 in Nature, volume 355, 145-147. Wolszczan had discovered the millisecond pulsar in question in 1990 at the Arecibo radio observatory. These were the first exoplanets ever verified, all the much more rare, that they orbit a pulsar.
- The first verified discovery of an exoplanet (51 Pegasi B) orbiting a main sequence star (51 Pegasi) was announced on October 6, 1995 by Michel Mayor and Didier Queloz in Nature, volume 378, page 355.
- A microlensing event in 1996 of the gravitationally lensed quasar Q0957+561, observed by R. E. Schild in the A lobe of the double imaged quasar, has led to a controversial, and unconfirmable speculation that a 3 Earth mass planet is possibly in the unknown lensing galaxy, between Earth and the quasar. This would be the most distant planet, if it could be confirmed, and is assumed to reside at redshift 0.39; 2.4 Gpc away (7.8 billion light years or 74 Ym), where the lensing galaxy is. The double-image quasar itself, called The Twin Quasar or Old Faithful, Q0957+561 A/B, resides at redshift z=1.41.
- In 1999, HD 209458b was the first exoplanet seen transitting its parent star, conclusively proving that the radial velocity measurements that were planets actually were planets.
- On November 27, 2001, astronomers using the Hubble Space Telescope announced that they had detected the atmosphere of the planet orbiting HD 209458 (known as HD 209458b and provisionally dubbed "Osiris"
). Also during that year, a star was located which had the remnants of one or more planets within the stellar atmosphere — apparently the planet was mostly vaporized. It has been suggested that there may be planets that orbit so closely to their suns that most of their mass has been stripped away by the heat, provisionally referred to as Chthonian planets.
- On July 10, 2003, using information obtained from the Hubble Space Telescope, scientists discovered the oldest extrasolar planet yet. Dubbed Methuselah after the biblical figure, the planet is about 5,600 light years from Earth, has a mass twice that of Jupiter, and is estimated to be 13 billion years old. It is located in the globular star cluster M4, in the constellation Scorpius.
- On April 15, 2004, separate teams announced the discoveries of three planets outside our solar system.
-- One of which is 17,000 light years away, more than three times farther away than the previous record holder. The background star that was used in the gravitational lensing is 24,000 light-years away. The newly-discovered exoplanet is estimated to be about 1.5 times the mass of Jupiter and presumed to be similarly gaseous. It orbits the star about 3 astronomical units (AU). Jupiter is 5.2 AU from the Sun.
-- The same day, a European team of planet hunters based at the Geneva Observatory found two giant planets using the transit method. Both planets are called "hot Jupiters," close to one Jupiter-mass but orbiting its star so closely that it completes an orbit in less than two earth days.
- In August 2004, a planet orbiting mu Arae with a mass of approximately 14 times that of the Earth (see
link) was discovered with the ESO HARPS spectrograph. It is the lightest extrasolar planet orbiting a main sequence star to be discovered to date, and could be the first terrestrial planet around a main sequence star found outside the solar system.
- In August 2004, a planet was discovered using the transit method with the smallest aperture telescope to date, 4 inches. The planet was discovered by the TrES survey, and provisionally named TrES-1, orbits the star GSC 02652-01324. The finding was confirmed by the Keck Observatory, where planetary specifics were uncovered.
Candidate planets- On September 10, 2004, a team of European and U.S. astronomers announced (see
link) what may be the first direct optical observation of an extrasolar planet, orbiting the brown dwarf 2M1207, 230 light-years from Earth. Its spectrum, which shows the presence of water, and other characteristics make the object almost certainly a planet, but further observations will be required to confirm that it does in fact orbit the star next to which it was photographed. The planet is believed to be a young gas giant approximately 5 times as massive as Jupiter, and to have an orbital radius of approximately 55 AU, which would also make it farther from its host star than any exoplanet previously detected by a factor of nine.
- In April 2005, a team of European astronomers released the first direct image of an extrasolar planet, GQ Lupi b, orbiting the main sequence star GQ Lupi, 400 light-years from Earth. Its orbital radius is approximately 100 AU.
Issue #46